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If the kinetic equation of a macroscopic system is expanded with respect to the 
velocity in terms of orthogonal functions, e.g., in terms of Hermite functions, 
one obtains an infinite hierarchy of equations for the expansion coefficients. 
Grad's method consists in truncating this hierarchy and investigating the re- 
maining finite system. In this paper we set up conditions under which this 
procedure is rigorously justified in case of the Fokker-Planck equation. 

KEY WORDS: Fokker-Planck equation of Kramers type; its hierarchy of 
Hermite equations of transfer; existence theory; truncation of the hierar- 
chy. 

1. INTRODUCTION 

Series expansions of the (unknown) solutions of certain equations belong to 
the classical and widely used tools in theoretical and mathematical physics. 
By this method the original equation is transformed into a sequence of 
equations for the expansion coefficients. Among others, expansions in 
terms of orthogonal functions play a prominent role. It is sometimes useful 
to expand a function only with respect to a certain subset of its variables. 

In applying this method one meets three characteristic problems: 
1. One has to set up the equations for the expansion coefficients. 
2. One has to solve these equations. 
3. One has to show that the sum of the series of which the coeffi- 

cients are gained by step 2 is a solution of the original equation. 
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A special example of the method described is known as the Grad 
procedure. The basic equation is the kinetic equation of a macroscopic 
system. Its solutions are expanded with respect to the velocity in terms of 
Hermite functions. The coefficients depending on the space coordinate and 
the time obey the so-called Hermite equations of transfer. Originally Grad's 
method was introduced to get "approximate solutions" (whatever this 
means) for the Boltzmann equation. In this paper we apply the Grad 
expansion to the classical solution of a Fokker-Planck equation [see (1) 
below]. It is our aim to treat the first and the second problem stated above. 
To the third problem we will say only a few words. 

We will arrive at the following results: 
(1) In Section 2 by a rather simple calculation the Hermite equations 

of transfer are derived. Thus the first problem is solved. 
(2) In Section 3 we study the solutions of the infinite hierarchy of 

equations of transfer. Conditions are given which ensure that the hierarchy 
can be solved recursively. This result generalizes for one-dimensional 
systems the existence theorem given in Ref. 1. Moreover the explicit form 
of the solution is given by a polynomial of operators acting upon certain 
functions. These results constitute a solution of the second problem. 

(3) From the literature a lot of truncation procedures of infinite 
hierarchies are known (Cf., e.g., Refs. 2, 3, and the literature cited there). It 
is tacitly assumed that by these truncation procedures approximate solu- 
tions of the complete hierarchy of equations of transfer are gained. But up 
to now nothing has been proved. We will show that under rather weak 
conditions the solutions of the truncated system of equations are the first 
components of a solution of the complete system. This result justifies the 
usual method. But on the other hand it also shows that "truncation" has 
nothing to do with "approximation." 

We remark that a similar result holds for the Boltzmann equation at 
least for Maxwellian molecules. 

2. THE BASIC KINETIC EQUATION AND ITS HERMITE 
EQUATIONS OF TRANSFER 

In this section we want to study the following (dimensionless) Fokker- 
Planck equation for a molecular distribution function f depending on 
(u, x,  t): 

3 i f +  V x �9 u f  + V ,  . K f  = V, .~ / - (V,  + u ) f  (1) 

where (u, x, t) are dimensionless velocity, position, and time, respectively, 
where the dependence of the field of external forces on (u, x, t) is given by 

K(u,x, t)  = K l ( X , t )  + K2(x,t)" u 
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X.2, 

satisfied: 

and where the friction tensor 7/ may depend on x, t. It is assumed that the 
system described by (1) is confined to a (not necessarily finite) box ~t 
which may vary in time. If I means the time interval for which the system is 
considered we have (x,t) E [,.Jt~lfit • (t} = :~2. 

Now we will treat the first problem. Though we want to determine the 
coefficients of a series expansion o f f  in terms of Hermite functions we need 
not make use of the series expansion of f. The reason is that the Fourier 
coefficients of a function may exist even if this function is not expandable 
in an orthogonal series. This fact simplifies the problem very much. The 
only thing we need is the following. 

Condition X. A function f :  1~ 3 • f ~  R is said to satisfy Condition X 
if the following relations hold. 

X.1. The integrals 

m"(x,t) := f ~uf(u,x,t)du 
exist for all n E N 0. The integral runs over all of R 3. 

In the interior f2 ~ of ~ and for n ff N o the following equations are 

f  uO,/du=o,f  uldu (2.1) 
n+l 

f = Vx f | uid  (2.2) 

f ~uVu'(Kf)du exists (2.3) 

f vu. (tV&uS)d,=o (2.4) 

X.3. In the interior ~2 ~ of f~ and for n E N  o the Fokker-Planck 
collision operator satisfies the condition 

f u| vu(vo 
For the definition of V~ 
reasons it is quite natural 
satisfy Conditions X. For 
The fields m n are called 
Hermite functions ,~ (u )  

see (39); it is not the Laplacian! For physical 
to assume that a classical solution of (1) should 

a more detailed discussion cf. Ref. 1, Section 2.1. 
moments  of f. Since the tensors | and the 

are bijectively related, the moments  m n can be 
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replaced by the Hermite moments h n which are defined by 

h n ( x , t )  := f e o " ( u ) f ( u , x , t ) q , ~  (3) 

Now using the notation introduced in Sections A.1-A.3 of the Appendix 
the first problem is solved by the following lemma. 

l e m m a .  Let f be a classical solution of (1) satisfying Condition X. 
Then all h ~ defined by (3) exist and satisfy the following equations: 

Oth n + V x �9 h ~+1 + nV  x V h n-1  - n K  l V h "-1  - n I I n K  2 �9 h" 

- n ( n - 1 ) K 2 V h n - 2 = - n I I n ~ r . h  ~, n ~ N  o, h - l = 0 ,  h -2 = 0  

(4) 

Proo f .  Let us abbreviate the left-hand side of (1) by _~f and the 
right-hand side by i f .  Then for all n ~ N O both sides of the expression 

<0 ", ~ f ) o  = (0",  J f ) o  (5) 

are meaningful. 
From Condition X.3 we conclude that 

(q'", J f ) o  = (Jq~",  f )o  

With the help of S ~  ~ = - n I I ~  T. 0n [cf. (48)] the last term of (4) follows 
at once. 

From Condition X.2.1 the first term of (4) is read off immediately. 
The term (0", 7x " u f )o  yields the second and the third term of (4) by 

use of Condition X 2.2. and formula (47). Finally we have to consider the 
term (~", V , .  K f )  o. Condition X.2.4 allows partial integration so that we 
find 

with 

and 

<d? n,v u" K f )  O =  A 1 + A 2 

A l = - <K1 �9 VuH", fq,~ 

A 2 = -- <U. K T .  Vu H n ,  f~~ 
where H n =  +" /00  denotes the nth Hermite polynomial [cf. (49)]. Using 
formula (50c), A, is seen to give the fourth term of (4). Using again formula 
(50c) and formula (50a) one finds 

u . K r .  V u H "  = n ( u  . K f  ) V H n-1 = n I I n K  2 �9 H "  + n ( n  - 1)K 2 k / H  n-2 

(6) 
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Thus A 2 gives the fifth and the sixth term of the left-hand side of (4), so 
that the proof is complete. �9 

We remark that the equations (4) are homogeneous so that they have 
the trivial solution h ~--  0, which is physically irrelevant. Likewise (1) has 
the trivial solution f = 0. Hence our problem is to find nontrivial solutions. 

3. SOLUTIONS OF THE HERMITE EQUATIONS OF TRANSFER 

3.1. The Recursive Solution Scheme 

In this section we study the equations of transfer without regard to the 
Fokker-Planck equation. We recall briefly the method developed in Ref. 1. 
Equation (4) can be written in the following form: 

V.  h n + l =  - g n ,  n ~ N  0 (7,n) 

with 

gn  = o thn  + n l - i n ( B T _  K2).  h n + n ( V  - K1) V h n - I  - n ( n  - 1)K 2 V h n - 2  

(7' ,n) 

From (7) one concludes immediately that the hierarchy of equations of 
transfer has to be solved recursively if it allows nontrivial solutions at all. 
Second, if the equations (7) have a solution each h n can be written in the 
form 

h "  = - Z"g"-1 + w" (8) 

with V �9 w" = 0 where Z "  is an inverse operator of the divergence operator 
V .. More precise, Z "  is any linear operator such that the relations 

V . Z " o = o  

and 

Z"V . o k = 0  + ~, 7 - ~ = 0  (9) 

hold for any tensor o of degree n -  1 in the range of the divergence 
operator 7 �9 and for any continuously differentiable tensor 0 of degree n. 

For the existence of Z n see Ref. 1. In the one-dimensional case one 
possible form of Z n can be written down easily because all "tensors" are 
scalars. Let a n ~ ~t for all t ~ I and let x ~ ~]t; then Z n defined by 

(z"o)(x,  t) = dy (10) 

for continuous o is obviously an inverse operator of 0 x. 
Now assume that a nontrivial recursive solution of (7) exists. Then we 

see from (8) and (7',0) that h I is determined by w I and h ~ Likewise h 2 is 
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determined by w 2, w ~, and h ~ and so forth. The result of these consider- 
ations is that there are operators Q" such that each solution (h ~ h t, h 2 . . . .  ) 
of (7) can be written in the form 

h" = O " ( w  ~ . . . .  , w " - l )  + w",  n ~ N (I1) 

with w ~ = h ~ and with V �9 w" = 0, n ~ N. The operators Q" are recursively 
defined by the described procedure. 

In the foregoing considerations we have met two characteristic prob- 
lems: 

1. The problem of existence, i.e., under what conditions is a nontriv- 
ial recursive solution of the hierarchy (7) possible at all? 

2. If a solution of (7) exists, which is the explicit form of the 
operators Q "? 

3.2, An Existence Theorem for the Equations of Transfer 

In Ref. 1 we proved the following existence theorem for the equations 
of transfer. 

Theorem. Let s 1 6 3  be a compact set and let 3s be a C ~- 
Liapunov surface. Moreover let K l E C~(s  K 2 ~  C~( s  and ~0k~ 
C ~(s for all k ~ N 0. Then the hierarchy (7) can be solved recursively. 

In this paper we will generalize this theorem in several respects, but on 
the other hand we will restrict our attention to one-dimensional systems. 
Such systems play a prominent role in many applications (Refs. 3, 4). 

For the space-time region f~ we assume the following hypotheses to be 
valid: 

1. ~2 = U t E ~ t  x ( t )  with 0 t = [c~ t, fit]; 
2. ~ is closed; 
3. There is a number a such that a E s for all t E I. 
It is useful to introduce the following class B (s of functions. 

Definition. B(s is the set of all functions g : s ~ R with 0~g E C(s 
and ~Oxg E C(s r E N o. 

Then the existence theorem reads as follows. 

Theorem. Assume that 3~K~ ~ C(~2), /~ E {1,2), r ~ N0, and let w k 
E B(~), k E N 0. Then, if g" is defined by (7',n) the equations 

h " + l ( x , t ) =  - f ~ .  w " + l ( x , t )  (12) 

with a,+ I E 0 t for all t E I and n ~ N O can be solved recursively. Equation 
(12) yields a solution (h~ 1 . . . .  ) of the equations of transfer (7) if w k is 
independent of x, i.e., w k ~ C ~ ( I ) ,  k ~ N. 
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Proof. Equation (12) for n = 0 reads 

x 0 
h ' ( x , t )  = - O,w w ' ( x , t )  

Hence 0~0xh ~ ~ C(~2). Moreover it is easily seen that 

aThl(x,t) = - f~aT+lw~ aTwl(x,t) 

Then by the hypotheses on f~ one finds 0~h I r C(~2), so that h I ~ B(~). 
Now assume that for l < n we have h z r B(f~). Then 0tkg n r C(f~) by 

definition of gn, and we find from (12) for n + 1: 

at0x h " + l =  -a~g n + aTax wn+~ ~ c(~2) 

and 
orhn+l  ( "  r+lgn r n+l ,_ - O, a y +  O,w 

�9 /a n + 1  

Thus the functions h" are defined and are in B(~2) for all n ~ f~0. By 
construction they satisfy the equations O~h "+1= - g " +  Oxw "+1. Hence 
the proof is complete. �9 

Now the theorem can be stated another way using the operators Z n 
defined by (10) and the operators Q" defined by (11). 

Corollary. Let Z"  be defined on C(f~) and let w " E  B(f~). Then 
(w ~ . . . . .  w n- l )  are in the domain of Qn. 

The proof follows immediately from that of the above theorem. In 
order to justify certain truncation procedures of the hierarchy (7) as we will 
do in Section 4 one has to start the recursive solution with n = m + 1 > 0 
rather than with n = 0. From the proof of the above theorem one concludes 
immediately as follows. 

Corollary. The Equations (7, n) for n > m + 1 can be solved recur- 
sively if the functions hm+l, hm, hm-l, wn,/'/~ m + 1 are in B(f/). 

Remark.  Clearly one is not only interested in general solutions of (7) 
rather than in solutions satisfying certain initial-value and boundary-value 
conditions. We do not touch these problems here. But it is easily seen from 
(12) that h" can be chosen such that hn(a,,  . )=  w ~ is a given C~(1) .  
function. 

3.3. The Explicit Form of the Recursive Solutions 

The operators Q~ are defined by the recursive procedure in a compli- 
cated way, and the existence theorems in the one-dimensional as well as in 
the three-dimensional case determine only subsets of the domains of the 
Q". Therefore it is clear that one can hardly give an explicit 'form of Qn. 
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But we will give the explicit form of certain restrictions of them. We start 
with some notation. 

NotaUon. Let Z n, n ~ N be operators as introduced in 3.1. From the 
existence theory of 3.2 we know that the domain of Z"  contains the 
C~(f0-tensors of degree n -  1 or in the one-dimensional case the B(~2)- 
functions. Now we define the operators 

s :  +' = - z o +  '[ . + n n o  0 T _  " ] 

S "+'._, = - n Z ' - t ( V  - K 0 V (13) 

s2+_~ = , ( ~  - 1 )Z"- 'K2  v 

where l = ~ i e i |  means the unit tensor. Here the domains of the 
differential operators are understood to be C ~(~0). The operator S~ "+t acts 
on tensors of degree a. By means of (13) another set of linear operators is 
defined: 

q • = l ,  q ; = 0 ,  n < k  
(14) 

q ; =  E s ~  s " - ~  s " - ~  . . . . . .  ' 
(al . . . . .  a~) E A~ 

for n > k, k ~ N 0 where A~ is the set of all r-tuples (a 1 . . . . .  ar) with 
aj ~ {1,2,3) and E~=la j  = n - k. 

With this notation the following representation theorem can be formu- 
lated. 

Theorem.  Q" is given by 

n - - I  

Q"(w~ "." , w"-~) = E q; (wk)  (15) 
k=0 

whenever the right-hand side of (15) makes sense. This implies that 

h n ~ n'wk" = qk( ), n E N  O (15') 
k=0 

is a solution of (7) whenever the right-hand side of (15') is defined and 
V . w ~ = 0 ,  k E N .  

Proof. First of all we note that the operators Q k are recursively 
defined by 

Q"+'(w ~ . . . . .  w") 

= - Z " + ' ( [ a , + n H . Q 1  r - K 2 ) . ] [ Q " ( w ~  

+ n ( V  -- g l )  V[  Qn-l(w~ . . . .  ) "Jr" wn--1 l 

- n(n - 1)K 2 V [ Q"-Z(w~ . . . .  ) + w"-Z] } (16) 
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for all (w ~ . . . ,  w ~) for which the right-hand side is defined. Equation (16) 
can be written in the form 

Q " + t ( w ~  ~  , . . . , w " - ' ) + w "  1 

~ n +  1 I ( w O  ~ dl - Qo- wo-, l 

+ S "-I  . . . .  w "-3) w '~-2] (16') , - 2 [  Q"-2( w~ + 

whenever the right-hand side makes sense. By induction one proves that the 
q~' satisfy the equation 

q / ~ + l ( w k  ) . ~ . + ,  . ~  k .  ~ . + ,  . -  . +  = a ,  q k t w  ) + a ; ,_ ,q  k 1(wk)  + S ,  'q~-Z(w~) (17) 

From (17) one concludes that 5 "  = ~ ' " - l  , 2_,~=lqk satisfies also (16'). Since Q" is 
the maximal operator defined by (16) Q" is a restriction of Q". Thus the 
theorem holds. �9 

4. THE TRUNCATED HIERARCHY 

4.1. Justification of the Truncation Procedure 

In thermomechanics one deals with the same systems as in kinetics 
with finitely many equations of transfer. This means that the whole 
thermomechanical information about a system is contained in the hierarchy 
of equations of transfer. The question is if it is possible to derive from the 
hierarchy a set of equations which contains only finitely many (Hermite) 
moments. Normally the "derivations" read as follows. Take n > 0 and put 
h k = 0 for all k > n. Then the first n + 1 equations of transfer are assumed 
to be the thermomechanical field equations (Refs. 2 and 3). The solutions 
gained by this truncation procedure are regarded to be "approximations" 
of the exact solutions. 

Now, for the case of the Fokker-Planck equation and its equations of 
transfer we want to show that the described truncation procedure can be 
justified rigorously. For this purpose let us consider the equations (7, n) for 
n = 0  up to n = m + l  and let 7 . h  " + 1 = 0  so that the mth equation 
simply reads 

O,h m + m]-I,,,(B - / ( 2 ) .  h ~ + m ( V  - K1) V h m- I  

- m ( m  - I)K 2 V h m-2  = 0 

Hence we have m + 1 linear partial differential equations for the unknowns 
(h~  J . . . . .  hm). Let us denote this system of equations by Sin. Then in the 
one-dimensional case one can state the following theorem. 

Theorem. Let 52, K1, and K 2 satisfy the assumptions of the second 
theorem of Section 3.2 and let ( h ~  h m) be a solution of S m with 
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h m ~ B(f~) and h m-I  E B(~2). Then there are functions h t, l > m + 1 such 
that (h~ 1 . . . .  hm, h m+l . . . .  ) is a solution of the complete hierarchy (7). 

Proof.  Let h m + ~ ( x , t ) =  wm+l( t )  with w "~+1E C ~  Then 8xh m+l 
= 0 and h m+l ~ B(f~). Hence by the second corollary of Section 3.2 there 
are functions h k, k > m + 2 so that the equations (7,k), k > m + 1 are 
satisfied. The system Sm together with axh m+l = 0 is identical with (7, n) for 
n ~ { 0 , . . . ,  m}. Hence the theorem holds, l 

Likewise we have in the three-dimensional case the following theorem. 

Theorem. Let f~, KI, and K 2 satisfy the hypotheses of the first 
theorem of Section 3.2 and let (h ~ . . . . .  h m) be a solution of Sm with 
h m E C ~(f~) and h m - 1 ~ C o~(~). Then there are tensors h l, l > m + 1 such 
that (h ~ . . . . .  hm, h ' ~ + ] , . . .  ) is a solution of (7,n), n E N 0. 

The proof is similar to that in the one-dimensional case. 
From these theorems one sees immediately that the truncation proce- 

dure has nothing to do with an approximation of any kind. But it is to be 
emphasized that the exact solutions of the hierarchy (7) do not lead 
automatically to solutions of the Fokker-Planck equation. Rather one has 
to show the convergence of a certain series and some other properties of it 
(Ref. 1). 

4.2. The Truncated Hierarchy 

In Section 4.1 we saw that the truncation procedure leads to a system 
Sm of linear partial differential equations. Let us now consider this system 
in the one-dimensional case in more detail. 

First we note that Sm can be written in matrix form. For this purpose 
let us introduce the column vector h by h = (h ~ . . . .  , hm) r, and let the 
matrices B and C be defined by 

0 1 
1 0 1 

2 0 1 0 

B = 
0 

m - 1  0 1 
m 0 

(is) 
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and 
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C =  

0 0 
Ks K 2 - n 

2K2 2K 1 2(K2- 7) 0 

r e ( m -  1)K 2 inK,  m ( K  2 - r l )  

(19) 

Then the system S m simply reads 

Oth + BOxh  = Ch (20) 

It is classified by the following lemma. 

Lemma.  B has m + 1 distinct real eigenvalues. Thus S,, is hyper- 
bolic. For  odd rn all eigenvalues are nonzero, for even m one eigenvalue is 
zero. 

Proo f .  Let x = (x 0, . . . ,  Xm) be an eigenvector of the matrix B to the 
eigenvalue )t. The components of x satisfy 

Xk+ 1 = ~C k -- kXk_  1 (21) 

w i t h x  m + l = 0 a n d x  ~=0 .  
Since any eigenvector is only determined up to a constant factor, 

we may set x 0 := 1. Obviously by (21) for all k E N o numbers x k are de- 
fined. Moreover x k is a polynomial 2k(X) in h of degree k, and x = 
(Xo(?to) . . . . .  Xm ()tO)), is an eigenvector of B to the eigenvalue X 0 if Xm + 1(X0) 
-- 0. In what follows we therefore investigate the polynomials ~k especially 
the zeros of Xm+j" TWO properties of Xk are easily proved: 

aXk 
d)t - k 2 k -  l (22) 

and 

if ffk()t) = 0 then ~ k -  ~()t) 4 = 0, k ~ N 

The first equation follows by induction differentiating (21). 

(23) 
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The proof of the second equation runs as follows: The assertion is 
obviously true for k = 1. Let us assume that it holds up to k -- n. If X is a 
zero of 4,,+ z then by (21) 

0 = = + 

Hence ~(X) must be unequal zero, for otherwise s and 2~_ 1 would share 
the same zero in contradiction to the assumption. 

From (22) and (23) it follows that xk has k distinct real zeros. The 
proof runs again by induction, x0 = 1 has no zero and 2~ = X the only zero 
X = 0. Let X~ . . . . .  X~ be the k distinct real zeros of x k. Hence 

.~+ ,(X,) = - k .~_ fiX,) :r 0 (24) 

and 

1 d ~  
x~-t(~") - k dX (X,) 4= 0 (25) 

Since the slopes at two adjacent zeros of a polynomial always differ in sign 
by (25) sign ~ _  l(X,) and therefore by (24) sign xk+ l(Xi) alternates from i to 
i + 1. Because of (22) the zeros of ~k are extrema of ~k+~. This means that 
~k+ ~, which is a polynomial of degree k + 1, has k distinct extrema with 
positive values at its maxima and negative at its minima. From this we 
conclude that ~k+~ has k + 1 distinct real zeros. 

The eigenvalues of B are the roots of ~m+~. Therefore B has m + 1 
distinct real eigenvalues. [] 

This lemma guarantees that one can apply the existence theory for 
hyperbolic systems. Especially in the stationary case we have explicit 
ordinary linear differential equations. From the very extended theory of 
these equations we extract the following results relevant to us. 

ProposiUon.  If the coefficients of C are in C ~(~) and if the initial 
conditions and the boundary conditions are also in C ~(~) then a solution h 
of S m exists in ~ and is in C ~(~) (cf. Ref. 5). 

In the stationary case the situation is much easier. 

Propos i t ion .  Let ~ be independent of t and let the coefficients of C 
be in C(f~). Moreover let m be odd. Then for any given r = (r 0 . . . . .  G )  
and x 0 ~ ~ a stationary solution h of S~ exists in ~ with h(xo)= r (e.g., 
Ref. 6). 

For even m one eigenvalue of B is zero so that one has m differential 
equations and one algebraic equation. But with some care similar results 
can be proved. Combining these propositions with the theorems of Section 
4.1 we arrive at the following result. For suitable initial conditions and 
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boundary conditions the truncation procedure leads to (exact) solutions of 
the complete hierarchy of equations of transfer. 

4.3. Solut ions of the Truncated Hierarchy 

In this section we assume that there are nontrivial solutions of S m (in 
the one-dimensional case). We want to study the formal structure of these 
solutions. 

The (m + 1)th equation of S m reads 

I 3 , -  m ( K  2 - ~/)]h m = m ( K  1 - Ox)h m - 1  q- m ( m  - 1)K2 hm-2 (26) 

Let us abbreviate the right-hand side of (26) by Gm. Since by assumption 
G m belongs to the range of the operator F m = Ot - m ( K 2  - ~1) we can write 
(26) in the form 

g m h  m =  G m (27) 

or equivalently by 

h m  = L mGm "-b ~ m  (28) 

where L m is an inverse of F ~ and ~b m is in the null space N ( F m ) .  Inserting 
(28) into the mth equation of S m we arrive at 

O x L m G  m + OxLpm = g m - ~  (29) 

Writing all terms containing h m-1 on the left-hand side defines an operator 
F m--I and a function G m -  1 such that (29) becomes 

F ~ - l h ~ - l =  G m - I  (30) 

where G m-!  depends on hm-2,  h m-3, and ~p~. If L m-1 denotes an inverse 
operator of F m -  t, (30) can be written in the form 

h m - 1  = L m - I G m - I  q._ l,[j m - I  

where ~ m - - 1  is an element of the null space N ( F  ~ -  1). This procedure can 
be carried on ending up with an equation 

g~ ~  G O (31) 

where G O depends on the elements ff~Jm, l.pm--I . . . . .  t~J 1 from the respective 
null spaces N ( F  ~ )  . . . . .  N ( F ] ) .  

Let us illustrate the described solution scheme for m = 1 where it is 
well known. The equation for h L reads 

~t hl + (n -- K 2 ) h  ] = (K~  - ~x)h  ~ (32) 
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Let us briefly write 

K ( x ,  t) = 2 [  rl(x,  t') - K2(x  , t ' ) ]  dt' 

Then the solution of (32) is of the form 

h i ( x ,  t) = e -K(x")h l (x ,  to) 

+ ~]e[K(x'" '-K(x")l[ K , ( x , t ' ) -  Ox]h~  ' (33) 

Inserting (33) into the first equation of S l and denoting the particle density 
by 0 = h l we arrive at a generalized diffusion equation 

O,O(x,t) = Ox f ' eK(X'") -K(x")[  0 x -- K l ( x , t '  ) ]O(x , t ' )d t '  
�9 . ' t  o 

- 0x[ ei(X">hl(x, to)] (34) 
This equation describes a diffusion process with memory and this again 
means that on the stage of the equations of transfer memory  effects are 
possible. As far as we are aware such. effects are not yet observed experi- 
mentally in diffusing systems. 

5. FINAL REMARKS 

In the Sections 2 -4  we treated the first and the second problem stated 
in Section 1. Though we concede that some of the results could perhaps be 
sharpened, the solution of the two problems is almost satisfactory. Now, 
what can be said about  the third problem? In Ref. 1 we treated this 
question for the so-called diffusion solutions. But mostly in physical litera- 
ture the problem is not even mentioned. In this paper  we do not try to give 
an answer; rather we confine ourselves to the remark that there are 
solutions of the equations of transfer which do not lead to solutions of the 
Fokker -P lanck  equation. This means that the truncation procedure says 
almost nothing about  the Fokker-Planck  equation itself. The third problem 
is a very difficult one which needs a special treatment. 

APPENDIX 

A.1. Symmetric Tensors 

The action of the symmetrizer I I .  on a tensor of degree n is defined by 
its action on a generator tz | �9 �9 �9 | t. 

1 
I I , t  I | �9 �9 �9 | t, := ~ ~o toi |  �9 �9 �9 | toi " (35) 
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where ~ runs over all permutations of (1 . . . . .  n). We also use the notation 

t~ V . . .  V t. := I I . t  I N . . .  | t. (36) 

A.2. The Inner Product 

The inner product of a vector u and a tensor T =  tl | �9 �9 �9 | t. of 
degree n is defined by 

u - T : = ( u . t ) t 2 @ . . .  @t .  

where u. t~  denotes the inner product of vectors. This notation can be 
easily generalized to an inner product of tensors of arbitrary degree 

(u 1@.'.  @Um)'(t l |  | 
=(U,~'ti)u ~| @Um_~Nt2| | (37) 

A.3. The V-Operator 

The effect of V on a function f or a tensor field T is given by 

V f := ~ O,fe i 
i 

V T : =  2 e i @ a i T  
i 

V 2 is defined iteratively 

(38) 

V2T:=  V(V T)  (39) 

Definition of the operator V .: The action of V.  on a tensor field T of 
degree n > l is given by 

V.  T : =  Z e i "  3iV (40) 

Definition of the operator V v : The action of V V on a tensor field T of 
degree n is given by 

V V T := I I n ( V r )  (41) 

The operator K - V: Let K be a vector field; then the action of K - V on a 
tensor field T is defined by 

( K - V ) T : = K |  
(42) 

( K - V ) .  T : = K .  T - V .  T 

and 
( K -  V) V T : = K V  T - V V  T 
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A . 4 .  

o r  

The Tensorial Hermite Functions and Hermite Polynomials 

The nth tensorial Hermite function is defined by 

where 00 is given by 

q)" = ( -  1)"V"d? ~ 

q~~ = (2rr)- N/2exp( -- �89 [I Ull 2) 

N is the dimension of the vector space to which u belongs. 
The Hermite functions satisfy the differential equation 

V .(V + u)+"(u)  = - n + ' ( u )  

and the relations 

(~ i  J[- Ui)~ )n  ~- nei V 0 n- 1 

and 

(43) 

(44) 

(45) 

(46) 

established by 

H n := 0"/ok ~ (49) 

Some useful relations for Hermite polynomials are listed below: 

H ' + ' ( u )  = (u - V ) H ' ( u )  (50a) 

H ' ( u )  = (u - V)' l  (50b) 

~;H" = ne; V H ' - I  (50c) 

(u .  V - V �9 V ) H ' ( u )  = n H ' ( u )  (50d) 

u | 1 7 4  (47) 
i 

From this it follows easily for a constant tensor ~ of degree 2 

V �9 ~/�9 (V + u)0" = -n I I , ,~  T' q," (48) 

where T means the transposed of a tensor of degree 2. 

Proof. 

v . ~ . ( v  + u),t," = ~ ~,jo,(oj + .+)+" 
*,J 

= n~.n;je/V a;q, ~-~ = - n ~ ; j e / V  (e;.+ ~) 
l,j t,j 

= - n I I . ( ~  r .  0")  

The connection between Hermite functions and Hermite polynomials is 
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